Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor.

نویسندگان

  • Martin Horak
  • Kai Chang
  • Robert J Wenthold
چکیده

NMDA receptors are glutamate-gated ion channels that play important roles in synaptic transmission and excitotoxicity. The functional NMDA receptor is thought to be a heterotetramer composed mainly of two NR1 and two NR2 subunits. Although it is generally accepted that only correctly assembled NMDA receptors can pass the ER quality control, the mechanism underlying this process is not well understood. Using truncated and chimeric NMDA receptor subunits expressed in heterologous cells and cortical neurons, we found that the third membrane domains (M3) of both NR1 and NR2B contain signals that cause the unassembled subunits to be retained in the ER. M3 of both NR1 and NR2B and, M4 of NR1, are necessary for masking ER retention signals found in M3. Thus, our data reveal a critical role of the membrane domains in the assembly of functional NMDA receptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steric masking of a dilysine endoplasmic reticulum retention motif during assembly of the human high affinity receptor for immunoglobulin E

Signals that can cause retention in the ER have been found in the cytoplasmic domain of individual subunits of multimeric receptors destined to the cell surface. To study how ER retention motifs are masked during assembly of oligomeric receptors, we analyzed the assembly and intracellular transport of the human high-affinity receptor for immunoglobulin E expressed in COS cells. The cytoplasmic ...

متن کامل

Export from the endoplasmic reticulum of assembled N-methyl-d-aspartic acid receptors is controlled by a motif in the c terminus of the NR2 subunit.

Functional N-methyl-d-aspartic acid (NMDA) receptors are formed from the assembly of NR1 and NR2 subunits. When expressed alone, the major NR1 splice variant and the NR2 subunits are retained in the endoplasmic reticulum (ER), reflecting a quality control mechanism found in many complex multisubunit proteins to ensure that only fully assembled and properly folded complexes reach the cell surfac...

متن کامل

An orderly inactivation of intracellular retention signals controls surface expression of the T cell antigen receptor

Exit from the endoplasmic reticulum (ER) is an important checkpoint for proper assembly of multimeric plasma membrane receptors. The six subunits of the T cell receptor (TCR; TCRalpha, TCRbeta, CD3gamma, CD3delta, CD3epsilon, and CD3zeta) are each endowed with ER retention/retrieval signals, and regulation of its targeting to the plasma membrane is therefore especially intriguing. We have studi...

متن کامل

An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing.

Formation of mature excitatory synapses requires the assembly and delivery of NMDA receptors to the neuronal plasma membrane. A key step in the trafficking of NMDA receptors to synapses is the exit of newly assembled receptors from the endoplasmic reticulum (ER). Here we report the identification of an RXR-type ER retention/retrieval motif in the C-terminal tail of the NMDA receptor subunit NR1...

متن کامل

Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling

Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 13  شماره 

صفحات  -

تاریخ انتشار 2008